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ECO-HYDROLOGY

The science which seeks to describe the hydrologic mechanisms that 

underlie ecologic patterns and processes (Rodriguez-Iturbe, Water Resour. Res., 2000)
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Understand how different land uses 

affect catchment water balance and 

biomass productivity

– to estimate the trade-off between 

carbon sequestration and water 

resources related to pasture and blue 

gum plantation

– to develop hydrological models at 

both plot and catchment scales for 

land-use planning and water 

management

WATER-CARBON TRADE-OFFS IN PRODUCTIVE RURAL CATCHMENTS
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CATCHMENT STUDY

-4 pastures
-3 plantations
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▪ Link water resources and vegetation 

health in native, urban reserves

– Test a set of measurement methods (in-situ 

and remote sensing) to relate water use 

with tree growth and biodiversity in urban 

reserves

– Develop models to assist with the 

management of urban reserves and parks

NATURAL URBAN RESERVES

Workshop on Thursday, October 24, 11 am



Catchment water balance

Beyond current frameworks
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HYDROLOGY

▪ Catchment water balance is a key issue

– Understanding and predicting how catchments store and release 

water

On the long term, the 
water balance becomes

𝑃 = 𝐸 + 𝑄
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HYDROLOGY – NEED FOR LAWS
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BUDYKO

▪ Mikhail Ivanovich Budyko (1920–2001)

WIREs Clim Change 2016, 7:682–692. doi: 10.1002/wcc.412

▪ Developed a framework for 

long-term catchment-scale 

water balance

• Two assumptions 

1. Steady state
2. Very large catchments

𝑃 = 𝐸 + 𝑄
𝐸 = 𝑓 𝑃, 𝐸0

P – average annual precipitation
E – average annual evapotranspiration 
Q – average annual streamflow 
E0 – average annual potential evapotranspiration  
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BUDYKO FRAMEWORK (BUDYKO, CLIMATE AND LIFE, 1974)

𝐸 = 𝑓 𝑃, 𝐸0
Dimensional analysis

(Buckingham- theorem )
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TURC FRAMEWORK (ANNALES AGRONOMIQUES, 1954)

𝐸 = 𝑓 𝑃, 𝐸0
Dimensional analysis

(Buckingham- theorem )

𝐸

𝐸0
= 𝑓𝑇

𝑃

𝐸0
= 𝑓𝑇 𝐻𝐼

Humidity Index

1 2 3
HI

0.2

0.4

0.6

0.8

1

E E0

𝐻𝐼 → +∞;
𝐸

𝐸0
→ 1

𝐻𝐼 → 0;
𝐸

𝐸0
→ 𝐻𝐼

Energy limited



12

SMALL CATCHMENTS

▪ Data from catchments worldwide do not follow the 

theoretical frameworks

▪ Climatic factors are not the only ones driving the water 

balance of small catchments 

Padron et al., Water Resources Research, 2017
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CURRENT POPULAR MODELS

Fu (Zhang et al., Water Resources Research, 2004) MCY (Choudhury, Journal of Hydrology, 1999)
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AIM

▪ Can we improve the Budyko and Turc frameworks?

▪ Can we overcome limitations of current approaches?

– Climate is the only forcing of the water balance

– Parameters in current models do not have a clear physical 

meaning and thus cannot be measured or estimated from 

measurements

Amilcare Porporato Salvatore Calabrese Jun Yin
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ADDING STORAGE TO THE FRAMEWORK

▪ Long-term water balance (steady state)

▪ Consider a catchment as a finite capacity

▪ Key factors driving E

– P: on the long term is the only supply of water

– E0: is the maximum demand of water from the atmosphere

– : maximum amount of water that can be stored within the 

catchment to supply E (Maximum Storage Rate)

0

- 0 is a depth representing the 
maximum storage, calculated 
from soil type and land use

- NP is the average number of 
rainfall events in a year

Φ = 𝑁𝑃𝜔0
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HYDROLOGICAL SPACES

𝐸 = 𝑓 𝑃, 𝐸0, Φ 𝐸

𝑃
= 𝑓𝐵

𝐸0
𝑃
,
Φ

𝑃
= 𝑓𝐵 𝐷𝐼 , 𝛾𝑃

Dimensional analysis
(Buckingham- theorem )

𝐸

𝐸0
= 𝑓𝑇

𝑃

𝐸0
,
Φ

𝐸0
= 𝑓𝑇 𝐻𝐼 , 𝛾𝐸

𝐸

Φ
= 𝑓Φ

𝑃

Φ
,
𝐸0
Φ

= 𝑓Φ 𝛾𝑃 , 𝛾𝐸

P – how much water can be stored with respect to P
E – frequency of rainfall with respect to the frequency at which E0 can deplete the storage
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APPLICATION – MOPEX CATCHMENTS

▪ 438 catchments across the continental USA

▪ Data of P, E0, and Q (E=P-Q) in the period 1948-2003

– 28 did not have at least 25 years of data of Q and E0

– 5 had E>E0 (other factors are affecting the water balance)

– 21 catchments are mostly (>80%) covered by wetlands, ice, and 

water bodies 
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CALCULATION OF PARAMETERS

▪ Rainfall data

– Average annual rainfall (P)

– Average annual number of rainfall events (NP)

▪ Potential evapotranspiration

– Average annual potential evapotranspiration (E0)

▪ Land cover (International Geosphere-Biosphere 

Programme, IGBP)

– Maximum storage, 0

 = NP 0 P=/P E=/E0

DI=E0/P HI=P/E0
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BUDYKO SPACE



20

TURC SPACE
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-SPACE
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SLOPE

105 catchments 
with slope steeper 
than 10
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MODEL (PORPORATO ET AL., AMERICAN NATURALIST, 2004)

Stochastic model for daily soil water balance
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MODEL
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CONCLUSION

▪ New framework for long-term catchment water balance

– Climatic conditions and key catchment characteristics

– Parameters have clear physical meaning

– Parameters can be estimated from measureable environmental 

variables

▪ Hydrologic spaces

– The new framework includes Budyko and Turc as limits for large 

catchments

– -space helps classify catchments in relation to land use and 

rainfall (both amounts and frequency of occurrence)

▪ Future

– Test against global data sets

– Include changes in storage (i.e., short-term water balance)
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